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ABSTRACT 

 

ION CHANNEL MODULATION BY PHOTOCAGED DIOCTANOYL PIP2 

by Junghoon Ha, BSc. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science 

at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2009 

 

Thesis Director: Diomedes E. Logothetis, Ph.D. 

Chair, Department of Physiology and Biophysics 

 

 Phosphatidylinositol bisphosphate (PIP2) directly regulates electrophysiological activity 

in a diverse family of ion channels whether the effect is stimulatory or inhibitory. Much has been 

unveiled about the apparent affinity and modulatory function of PIP2 using a chemically 
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modified dioctanoyl PIP2 (diC8), a membrane delimited cytosolic co-factor in inside-out 

macropatch experiments.  Yet, the scarcity of molecular tools that permit fine external control in 

whole-cell systems has precluded future studies from probing the physiological role of PIP2 in 

cells in the presence of a fully intact cytoplasm. Here we introduce light as an external control 

for PIP2 through photocaging of diC8, and test its activation of Kir2.3 (IRK3), an inwardly 

rectifying ion channel that has previously shown to possess moderate binding affinity to PIP2, in 

excised, inside-out macropatches.  Our experiments revealed that photocaged-diC8 and irradiated 

photocaged-diC8 have significantly different activation kinetics than the fully active diC8. 

Surprisingly, the activation of caged-diC8 by UV irradiation attenuated Kir2.3 activity, while the 

inactivated diC8 (caged-diC8) resulted in similar magnitude of channel activity compared to the 

currents elicited by unmodified diC8. Interestingly, we also show that application of both 

activated (irradiated) and inactive (caged) diC8 in macropatches generated highly fluctuating ion 

channel activity. 
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INTRODUCTION 

 

Ion channels, macromolecular pores in cell membranes that belong to a diverse family, 

are regulated by complex extracellular and intracellular signals. Most notably, it is their 

concerted response that allows our cells to communicate in a coordinated manner through 

electrical signals in nerves, muscles, and synapses. This coordinated electrical activity equips us 

with the ability to perceive and react immediately to changes in our environment. Garnering 

much attention in science, great progress has been made in the past several decades to aid our 

understanding of this remarkable family of proteins. Initially, ion channels were successfully 

characterized as pores in lipid membranes. Soon after, their contribution to an electrochemical 

gradient across the plasma membrane (along with transporters) as well as the complex nature of 

the membrane spanning channels became the focus of many researchers (10). Breakthrough 

electrophysiological techniques such as patch clamping have greatly shaped and contributed to 

our current understanding of ion channel function (7). 

In particular, with powerful and versatile experimental tools that became available with 

the advent of patch clamp, researchers have been able to determine over the past 30 years key co-

factors of ion channel regulation. In parallel to the discovery and characterization of complex 
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cytoplasmic modulators and their effector ion channels, inside-out patch experiments on 

inwardly rectifying potassium (Kir) channels have led to the discovery of a myriad of 

cytoplasmic modulators of ion channel function and most notably lipid-induced gating of 

channels (such as that induced by PIP2 – Fig. 1). While previous studies on ion channels 

searched solely for proteins that interact with ion channels, Hilgemann and colleagues 

demonstrated that phosphoinositides, highly negative-charged anionic lipids with myo-inositol in 

the head group can also directly modulate channel activity (9). Their experiments revealed that 

phosphoinositides such as phosphatidylinositol-4,5-bisphosphate (PIP2) can activate native 

cardiac KATP channels. Ensuing studies by Fan and Makielski uncovered that PIP2 modulation of 

ion channels was not only limited to KATP channels, but also applied to other inwardly rectifying 

potassium (Kir) channels such as Kir1.1 and Kir2.1 (5). In the past decade, experiments that 

focused on PIP2 modulation of inwardly rectifying potassium (Kir) channels have revealed that 

virtually all members of the Kir channel family [Fig. 2] are affected by PIP2 and eventually 

served as paradigm to probe other ion channel-PIP2 interactions (13). In agreement with studies 

on Kir channels, PIP2 has emerged as an ubiquitous modulator of ion channel and transporter 

function (18). 

Thereby, phosphatidylinositol-4,5-bisphosphate, PI(4,5)P2, was shown to be the most 

abundant and potent of the phosphoinositides in Kir channel modulation compared to other 

naturally occurring phosphoinositides: PI, PI(4)P, PI(3,4)P2, PI(3,5)P2 and PI(3,4,5)P3 (8, 14, 19, 

20). Although, the parent compound phosphatidylinositol (PI) can become phosphorylated at the 

3, 4, and 5 positions of the inositol ring in every combination, PI(4,5)P2 [Fig. 1] is the most 

abundant poly-phosphoinositol making up 1% of the total phospholipids of the plasma 

membrane (6). PIP2 has three phosphate groups, one of which is in a phosphodiester bond, and a 
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net charge near -5 at neutral pH (12). In the late 1970s, PIP2 was shown to be the substrate of 

plasma membrane-delimited enzyme phospholipase C (PLC), which hydrolyzes PIP2 into two 

secondary messengers [Fig. 3], soluble inositol 1,4,5-trisphosphate (IP3) and membrane-

anchored diacylglycerol (DAG) (18). IP3 and DAG were subsequently shown to release Ca2+ 

from intracellular stores within the cell and to recruit and activate protein kinase C (PKC), 

respectively (12). Moreover, PIP2 was shown to serve as a targeting anchor for proteins that 

catalyze endocytosis and exocytosis such as GTPases, PKC, and other components of the actin 

cytoskeleton (18). Since PIP2 served as an epicenter for these two signaling pathways that affect 

ion channel function indirectly through secondary messengers, it became critical to perform the 

necessary control experiments to ensure that electrical phenotype was a result of direct PIP2-

channel interactions. 

As it became increasingly evident that PIP2 is requisite for ion channel and transporter 

function in the plasma membrane, laboratories began focusing on where and how PIP2 interacts 

with Kir channels. First attempts examined the effects of naturally occurring phosphoinositol 

lipids on cloned Kir6.2/SUR1, through their direct application to the cytoplasmic membrane side 

of excised patches (19). In these experiments, channel activity was allowed to rundown, a 

process which typically occurs in excised patches due to hydrolysis and dephosphorylation of 

endogenous phosphoinositides. Then PIP2 as well as various phosphoinositides were tested to see 

whether they could restore channel function.  

As PIP2 emerged as the most effective of the phosphoinositides in recovering (activating) 

channel activity, it became clear that Kir channels exhibited distinct regiospecificities of 

interaction with the phosphate groups on inositol carbon positions 4 and 5 (13). Hypothesizing 
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that PIP2’s acidic negatively charged phosphates (at neutral pH) interact electrostatically with 

basic positively charged residues on ion channels [Fig. 4], laboratories focused on identifying 

channel regions that are vital for ion-channel modulation by PIP2. These inside-out patch 

experiments required the use of modified shorter PIP2 analogs such as dioctanoyl PIP2 (diC8), 

which due to their water solubility were much easier to wash out of membranes (13). Logothetis 

and coworkers utilized diC8 to determine the apparent affinity of PIP2 for a particular Kir 

channel and compare it to other channels. (16, 17).  

The conserved basic sites that bind PIP2 were unveiled through systematic mutagenesis of 

highly conserved basic residues in the cytoplasmic domains of Kir channels (13). Mutant 

channels, whose basic residues were replaced with neutral residues, exhibited decreased recovery 

of ion channel activity upon addition of exogenous PIP2 to the cytoplasmic side. Furthermore, 

mutant channels showed increased sensitivity to inhibition by poly-L-lysine (a PIP2 scavenger) 

as well as PIP2 specific antibodies suggesting that the mutations reduced apparent PIP2 affinity 

(22). Subsequent experiments also showed that one could swap a mere residue in Kir2.3 with a 

corresponding residue in a related Kir channel (Kir2.1) [Fig. 6] that is more sensitive to PIP2, to 

increase its apparent affinity to PIP2 and vice-versa (4).  

Thus, our understanding of ion channel modulation by PIP2 has offered great insights into 

mechanisms underlying the gating of ion channels. However, PIP2 regulation of ion channels in 

more physiological whole-cell systems (as opposed to the excised patch setting which is 

removed from a constellation of known and putative cytoplasmic co-factors), still greatly eludes 

us. Heterologous systems (such as Xenopus laevis oocytes used to study ion channel modulation) 

fall short as models of specialized excitable cells and, thus are not as useful in evaluating PIP2’s 
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physiological significance in cellular function; PIP2’s effects must be verified in native cells. 

Keselman and colleagues have loaded soluble diC8 into a whole cell through the electrode tip 

(11). Although, the loading of PIP2 produced the predicted effect, attenuating the inhibitory 

effect of protein kinase C (PKC) on Kir3.1/Kir3.4 channels by replacing hydrolyzed PIP2 at the 

plasma membrane [Fig. 5], the method is in reality a crude approximation of the effect of PIP2 on 

ion channels in whole-cell systems. The delivery of diC8 into the whole cell through the 

electrode tip presents numerous seemingly insurmountable limitations. The diffusion of PIP2 

becomes a significant artificial determinant influencing the modulation of ion channels. In the 

course of diffusion, PIP2 may stick to the walls of the glass electrode and could also be rapidly 

quenched by cytoplasmic enzymes. Such possibilities are of concern especially as indicated by 

the fact that large concentrations of PIP2 are required in the electrode (e.g. 200 µM) to elicit a 

significant PIP2 response. Such concentrations can be 1-2 orders of magnitude higher than has 

been convincingly shown in excised patch experiments. The total estimate of PIP2 in a whole cell 

is thought to be equivalent to a 4-10 µM solution if dissolved in the cytoplasm (14). Greater 

external control over diC8 is required to improve the delivery of PIP2 in whole-cell experiments 

that aim to evaluate physiological effects of known PIP2 concentrations. 

To this cause, chemically modifying diC8 (PIP2 analogs) constitutes a novel attempt to 

improve the delivery of PIP2 into whole-cell systems. In a process called "photocaging," one can 

shield the active domains of PIP2, through the addition of effective “caging groups” such as 2-

nitrobenzyl group I and the coumarin moiety (21). Ultraviolet (UV) light would then be applied 

to activate the caged molecule at a specific wavelength. Nitrobenzyl groups have been installed 

on small inducers of gene expression, such as doxycycline, tetracycline, lactose, β-estradiol, and 

ecdysone, in order to cage and inactivate these molecules (1, 2, 12, 15). When these caged 
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inducers are irradiated at their maximum absorption wavelength and freed from the “caging,” 

they are able to bind the protein activator, which binds to a promoter sequence on DNA, turning 

on gene expression. Experiments with fluorescent reporters have already demonstrated the 

spatio-temporal control one can exert on systems using light and photocaged molecules (21). 

Commonly, the photocages are decorated with electron donating groups (-OCH3) to shift the 

maximum adsorption to a longer wavelength (365 nm) to avoid damaging the cells as well as 

activating several UV-induced signaling pathways (21).   

With the ultimate aim to better understand the physiological role of PIP2 in a whole-cell 

system, we are collaborating with Dr. Deiters and his coworkers who have synthesized and 

provided us with a mixture of photocaged diC8, adding nitrobenzyl groups as cages to phosphate 

groups on the inositol head group at either positions 4 or 5 or simultaneously at both positions 

[Fig. 11]. Prior to using the photocaged dioctanoyl PIP2 (diC8) on whole-cell systems, we have 

concentrated on testing the effect of photocaged-diC8 on Xenopus laevis oocyte macropatches 

containing Kir2.3 channels that have moderate apparent affinity [Fig. 6] to diC8 among inwardly 

rectifying potassium channels (in comparison to the high affinity Kir2.1 and the low affinity 

Kir3.x channels). 
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Figure 1. Phosphatidylinositol (4,5)-bisphosphate and dioctanoyl PI(4,5)-bisphosphate 

(diC8). PtdIns(4,5)P2 is a minor phospholipid component of the cytoplasmic leaflet in plasma 

membranes, where it is a significant substrate for a number of membrane-localized signaling 

proteins. PtdIns(4,5)P2 is primarily made by the type I phosphatidylinositol 4 phosphate 5 

kinases from PI(4)P.  A. Long-chain aa-st PI(4,5)P2. Schematic of endogenously produced 

PI(4,5)P2.  B. Soluble dioctanyl PI(4,5)P2  (diC8).  Schematic of chemically modified PI(4,5)P2. 

The palmitoyl group and 19-carbon long chain of aa-st PI(4,5)P2 have been replaced by shorter, 

more soluble singly-bonded 8-carbon long fatty acid chains.  
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Figure 2.  Dendrogram of the Kir family. The Kir  superfamily contains at least 15 members in 

six distinct subfamilies (Kir1, Kir2, Kir3, Kir5, Kir6, Kir7) that respond to various cytoplasmic 

and extracellular modulators; channels are two-membrane spanning (2TM) and share about 30-

40% homology among the Kir subfamilies and >60% within the subfamilies. Kir channels were 

characterized strictly by their electrophysiological behavior as they allow more conduction in the 

inward than in the outward direction due to reduced open probability in depolarizing conditions 

across the membrane.  However, in physiological conditions, Kir channels have a key role in 

stabilizing the membrane potential.  In addition, regulation of these channels can alter the 

membrane potential and cellular excitability. 
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Figure 3.  PIP2 signaling pathway indirectly modulates ion channels through the activation 

of protein kinase C (PKC) and Ca2+-depependent enzymes using secondary messengers. 

Activation of phospholipase C (PLC) results in the hydrolysis of phosphatidylinositol (PIP2) to 

produce inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 activates Ca2+ channels 

in the endoplasmic reticulum (ER) triggering the release of Ca2+ from intracellular stores. The 

cytoplasmic rise in Ca2+ level and DAG then activate protein kinase C (PKC), which in turn 

phosphorylates K+ channels, thereby modulating current across the membrane. 
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Figure 4. Stimulatory effect of PIP2 on Kir channels via direct regiospecific-electrostatic 

interactions.  Two highly negative-charged phosphate groups (depicted here by red circles) 

attached to the 4 and 5 carbons of inositol (represented by hexagonal inositol ring) in the inner 

leaflet of the plasma membrane interact with candidate positively charged residues that are 

highly conserved in the Kir superfamily. Net inward movement of potassium ions depicted by 

the blue arrow is indicative of hyperpolarizing conditions typically applied to membranes 

expressing Kir channels. A. Schematic of a Kir channel in the inactivated closed state. When the 

level of PIP2 is low (often depleted through PIP2 dephosphorylation, hydrolysis, or run down in 

excised patch experiments), Kir channel remains in the closed state. B. Schematic of a Kir 

channel in the activated open state via the binding of PIP2 to the channel: relies both on the 

spatial distribution of phosphate groups on the inositol ring as well as electrostatic interactions. 
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Figure 5. Injection of diC8 into HEK293 cells reduces the inhibitory effect of protein kinase 

C (PKC) on whole-cell Kir3.1/Kir3.4 activity. Figure is taken from Keselman, et al. [17]. 

Activation of PKC with phorbol 12-myristate 13-acetate (PMA) inhibits whole-cell 

Kir3.1/Kir3.4 activity. Applying PMA and inducing PIP2 hydrolysis using wortmannin (WMN), 

a fungal metabolite that serves to deplete whole cell-PIP2 levels (at micromolar concentration) 

both serves to inhibit the activity of Kir3.1/Kir3.4 channels. On the other hand, addition of 

PIP5K (in addition to PMA), which should increase the whole-cell PIP2, countered the inhibitory 

effect of PMA on Kir3.1/Kir3.4 activity. Lastly, application of dioctanoyl PIP2 (diC8) at 200 µM 

concentration through the electrode rescued Kir3.1/Kir3.4 activity from the inhibitory effect of 

PMA. 
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Figure 6.  Kir channels have differential apparent affinity to PIP2.  Figure is taken from Du, 

et al. [16]. Inwardly rectifying potassium channels have distinct sensitivities to PIP2: for 

example, Kir 2.1 is approximately one order of magnitude more sensitive to PIP2 than Kir2.3.  

Replacing a single residue in Kir2.3 with a corresponding residue in Kir 2.1 (I to L), a channel 

that binds with higher affinity to PIP2, significantly increases the apparent affinity of Kir2.3 to 

PIP2. Left Panel: One residue that significantly affects Kir-PIP2 interaction is highlighted across 

the superfamily of Kir channels (L, I, M, or V). Right Panel: Dose response curves constructed 

from measurements of inside-out macropatches expressing the channels indicated (Kir2.1, 

Kir2.3, and Kir2.3-I213L) in Xenopus laevis oocytes respond to different concentrations of diC8. 

Swapping a single isoleucine (I) residue in Kir2.3 with a corresponding leucine (L) residue in 

Kir2.1 makes it approximately 5 times more sensitive to diC8. 
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MATERIAL AND METHODS 

 
In vitro RNA transcription and Xenopus laevis oocyte injection 

 

Human Kir2.3 (IRK3) cDNA constructs were subcloned into the pGEM-HE vector by 

previous laboratory members in order to generate transcripts for expression in Xenopus laevis 

oocytes (4). The Kir2.3-pGEM-HE construct was amplified using supercompetent XL1-Blue E. 

coli (Stratagene, La Jolla, CA) and isolated using a miniprep kit (Fermentas, Glen Burnie, MD). 

Prior to cRNA in vitro transcription, amplified Kir2.3-pGEM-HE was linearized at the 

3’end before the 3’ untranslated region with NheI digestion overnight at 37°C. Kir2.3 cRNA was 

in vitro transcribed using T7 polymerase (Ambion, Austin, TX). Size and integrity of cRNA was 

confirmed by electrophoresis on 1.2% agarose gel using denaturing buffer (1X MOPS / 

formaldehyde). Oocytes, prepared through vigorous collagenase digestion, were injected with 2-

4 ng of Kir2.3 cRNA. Injection pipettes were made from borosilicate glass (WPI, Saratosa, FL) 

using a Sutter P-97 microelectrode puller and were manually cut to produce tips of ~12 µm 

diameter.  

 

Photocaging of soluble dioctanyl PIP2 (diC8) 

Our collaborator from North Carolina State University, Dr. Deiters with his coworkers, 

first solubilized PtdIns-(4,5)-P2 1,2-dioctanoyl (PIP2) sodium salt (0.5 mg) in 390 mL of ddH2O 
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at pH 4.56. The nitrobenzyl caging group in diethyl ether was added to the reaction and stirred in 

the dark. After eight hours, the diethyl ether was removed and the remaining mixture was 

washed with diethyl ether five more times to remove the excess caging group. Lastly, the 

aqueous layer was filtered by washing with ddH2O and the product was concentrated in vacuo to 

yield solid mixtures of singly and doubly caged-diC8. The caged-diC8 mixture [Fig. 11] was 

stored in a light resistant container and was aliquoted in Fluoride/Vanadate/Pyrophosphate 

(FVPP: 96 mM KCl, 5 mM EDTA, 10 mM HEPES, 5 mM NaF, 3 mM Na3VO4, 10 mM 

Na2PO7) solution and stored at -20°C prior to use. 

 

Preparation of long chain PIP2 (aa-st PIP2) 

L-a-phosphatidylinosito-4,5-bisphosphate (Avanti, Alabaster, AL) was aliquoted and 

dried using a SpeedVac. The aliquoted amounts were added to a 0.5 mL ND96K solution (91 

mM KCl, 1 mM NaCl, 1 mM MgCl2, and 5 mM HEPES/KOH), vortexed then sonicated for 12 

minutes for two rounds with a 5-minute resting interval in between. The aliquots were then 

added to 5 mL of FVPP solution, and vortexed then sonicated as described to create a 10 µM 

long chain PIP2 solution. 

 

Whole-cell recordings and measurements 

Whole-cell recordings [Fig. 7] in Xenopus laevis oocytes were made 36-48 hours after 

cRNA injection. Currents were recorded using two-electrode voltage clamp. Electrodes were 

filled with 1% agarose in 3 M KCl to prevent leakage of KCl into the oocytes. Electrodes were 
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pulled to a resistance less than 2 MΩ. Kir2.3 currents were recorded in high potassium (HK) 

ND96K solution (as described earlier). 

A voltage ramp protocol from -100 mV to 100 mV was applied at one second intervals, 

and currents corresponding to -100 mV were plotted as a function of time to produce time course 

relationships. Potassium currents were blocked by 3 mM BaCl2 in ND96K solution. The leak 

current was approximated as current passing through the oocyte when the barium solution was 

perfused and subtracted from the total current measured (3).  Whole-cell recordings were 

obtained using an Axopatch amplifier using Axon 8.1 software (Axon Instruments, Union City, 

CA). Electrodes were pulled to resistance values between 750 kΩ – 1.2 MΩ. The whole-cell 

recordings from oocytes were carried out 36-48 hours after injection. Data were analyzed and 

graphed using Clampfit 9.0 (Molecular Devices, Sunnyvale, CA) and Origin 7.0 software 

(OriginLab, Northampton, MA). 

 

Macropatch recordings and measurements 

Macropatch recordings in Xenopus laevis oocytes were obtained from manually 

devitellinized oocytes. All experiments created inside-out patches by gently touching the exterior 

of the oocyte with the electrode and applying gentle negative pressure [Fig. 8]. Data were 

collected with the use of an Axon 8.1 patch-clamp amplifier and pCLAMP data acquisition 

software (Molecular Devices, Sunnyvale, CA). Electrodes were made as previously described 

except the resistance was between 700 kΩ to 1.2 MΩ. 
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 In all macropatch experiments [Fig. 9], FVPP (as described earlier) was used as the 

bathing solution to inhibit lipid phosphatases and prevent rapid rundown of current due to PIP2 

hydrolysis. Poly-l-lysine (Sigma), with a molecular weight ranging between 30-60 KDa was 

dissolved in FVPP and used as a scavenger for PIP2. Oocytes were also perfused with the 

following mixtures diluted in FVPP: 2 µg/mL poly-L-lysine, 10 µM aa-st PIP2, 50 µM diC8, 50 

µM caged-diC8 provided by Dr. Deiters and co-workers. Dr. Tang performed a number of the 

final experiments to test the effects of UV irradiation on caged-diC8 as well as to confirm results 

on the non-irradiated caged-diC8. 

As with whole-cell currents, a voltage ramp protocol from -100 mV to 100 mV was 

applied at one-second intervals, and current amplitudes were measured at -100 mV with a 

sampling rate of 4 kHz. Data were analyzed and graphed using Clampfit and Origin software.  

 

Irradiation of caged-diC8 in macropatch recordings 

During macropatch experiments, caged-diC8 was irradiated using a 23 W lamp (UVP, 

Upland, CA) adjusted to emit 365 nm UV waves (near the maximum absorption wavelength of 

the diazo-caging groups conjugated to diC8) [Fig. 10]. Due to patches tearing upon direct 

exposure to UV light, caged-diC8, housed in a plastic syringe, was irradiated at the reservoir 

placed approximately 40 cm above the macropatch setup. The UV lamp was held approximately 

5-10 cm away from the reservoir for 30-60 seconds. Similarly, non-modified diC8 was also 

irradiated as described to observe whether the UV light had any direct influence on uncaged-

diC8 itself. 
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Statistics 

 In the summary data, (Fig. 13B and Fig 14B) error bars in the figures represent SEM. For 

clarity, the mean of the average currents (µA) was normalized to that of current across cell-

attached patches. One-way repeated-measures ANOVA were performed, and pairwise 

comparisons were made by Student-Newman-Keuls method with an overall signifiance level of 

P < 0.05 in SigmaStat 3.11 (Systat) to assess whether the perfused reagent elicited significantly 

different current levels relative to the patch in the cell-attached configuration. 
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Figure 7. A schematic demonstrating inwardly-rectifying whole-cell potassium currents in 

Xenopus laevis oocytes using the ramp protocol. When a voltage ramp protocol from -100 mV 

to +100 mV is applied to the oocyte membrane, it changes the electrical driving force across the 

membrane, rapidly altering the membrane potential linearly. The length and direction of the 

arrows correspond to net K+ ion movement and direction of movement across the oocyte 

membrane. Concentration of K+ ions are assumed to be equal across the membrane (roughly 90 

mM), contributing to 0 chemical driving force across the membrane. Top. Voltage ramp protocol 

applied to the oocyte. Bottom-left: Schematic shows robust net inward current corresponding to 

hyperpolarizing voltage of the ramp protocol (-100 mV).  Bottom-middle: Schematic shows no 

net movement of K+ ions (at 0 mV, absence of electrical driving force). Bottom-right: 

Schematic shows significantly less net outward movement of K+ ions regardless of application of 

symmetric depolarizing current (+100 mV) across the membrane. 

 

 

 



www.manaraa.com

 

 

25 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

26 

  

 

 

 

 

 

Figure 8. A schematic of cell-attached (C/A) and inside-out (I/O) macropatch setup. 
 
A. A cell-attached macropatch setup is made by gently touching the exterior of devitellinized 

oocyte with the electrode and applying gentle negative pressure forming a giga-seal. B. 

Subsequently, the inside-out patch could be setup by pulling the electrode gently away from the 

oocyte membrane. 
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Figure 9. Inside-out (I/O) patch gives us external control over cytoplasmic conditions. The 

inside-out patches afford us with tremendous versatility in searching for cytoplasmic regulators 

of channel function. The schematic shows inward movement of K+ ions in response to 

hyperpolarizing conditions induced by the voltage clamp. Although candidate extracellular 

factors can be added to the inside of the electrode, it affords very little opportunity for dynamic 

electrophysiological experiments while one can easily manipulate the cytoplasmic conditions 

through selective perfusion of candidate co-factor(s). 
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Figure 10. Activating photocaged-diC8 with ultraviolet (UV) irradiation. A simplified 

schematic describing the doubly caged (inactive) and uncaged (active) state of doubly caged-

diC8. Red boxes with “X” inscribed is a simplified schematic of diazo groups that were 

conjugated to diC8. A. Caged-diC8. Negative charges on phosphate groups are protected by the 

cages.  B. Uncaged-diC8. Negative charges on phosphate groups are not exposed and ready to 

interact with effectors as irradiation bends caging group away from the acidic negative charges. 
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Figure 11. A schematic of diC8 and singly and doubly photocaged-diC8. The nitro-benzyl 

caging group in diethyl ether conjugated to (A) diC8 in the dark to yield (B) singly and (C) 

doubly caged-diC8. 
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RESULTS 
 

Kir2.3 (IRK3) channel gives rise to Ba2+ blocked inwardly rectifying whole-cell K+ current 

As described in previous heterologous expression experiments, Xenopus oocytes were 

injected with in vitro transcribed human Kir2.3 cRNA, and membrane currents were recorded 

36-48 hours later using two-electrode voltage clamp. Oocytes were perfused with high potassium 

(HK) solution ND96K containing 96 mM KCl. A voltage ramp protocol from -100 mV to 100 

mV was applied to the membrane at one-second intervals. The magnitude of the 

hyperpolarization-induced currents (at -100 mV) was plotted as a function of time.  

At -100 mV, uninjected oocytes yielded 1-2 µA of inward current (data not shown), 

indicative of trace amounts of endogenously expressed inwardly rectifying channels, while 

oocytes injected with Kir2.3 cRNA produced currents of mostly 20-25 µA [Fig. 12A]. Perfusion 

of 2 mM BaCl2 in HK solution blocked nearly 95% of the inward potassium current [Fig. 12A] 

in agreement with previous studies. 

Current-voltage relationships of Ba2+-sensitive currents from Kir2.3 injected oocytes 

confirmed the inwardly rectifying properties of Kir2.3 [Fig 12B]. These results confirm previous 

studies that Kir2.3 produces a robust inwardly rectifying potassium current that is sensitive to 

barium block. 
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Long chain PIP2 (aa-st PIP2) and soluble dioctanoyl PIP2 (diC8) rescue Kir2.3 currents in 

excised macropatches. 

Xenopus oocytes were injected with in vitro transcribed Kir2.3 cRNA and were allowed 

to express the channel for 36-48 hours. The injected oocytes were devitellinized manually 

through the use of forceps because the vitelline membrane impedes seal formation, and a 

microelectrode was carefully juxtaposed to the oocyte plasma membrane with gentle negative 

pressure to form a GΩ-seal. From the cell-attached configuration, a patch was excised from the 

oocyte to generate an inside-out macropatch, exposing the extracellular side of the membrane 

partition to the HK ND96K solution contained in the microelectrode, and the cytoplasmic side to 

the perfusion solution. This mode of the patch-clamp technique is ideal for testing intracellular 

modulators of ion channel activity by bath perfusion. 

When hyperpolarized to -100 mV, inward current magnitudes of 200-1000 pA were 

recorded in macropatches expressing Kir2.3 while 20-30 pA currents were measured in 

uninjected oocytes [data not shown]. As described in previous experiments, the inward current 

recorded in macropatches usually increased or decreased prior to run-down upon excision from 

the oocyte in the cell-attached to inside-out patch configuration reflecting the immediate changes 

in cytoplasmic concentration of potassium. The eventual run-down (data not shown) as the patch 

was held in inside-out setup represented the dephosphorylation of endogenous, membrane 

delimited PIP2 in the patch 

Addition of the naturally occurring long chain arachidonic acid-stearyl (aa-st) PIP2 (10 

µM) significantly increased the activity of injected patches 2-fold [Fig. 13B]. Perfusion with a 

solution containing Fluoride/Vanadate/Pyrophosphate (FVPP), that inhibits lipid phosphatases, 
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maintained channel activity [Fig. 13A]. Perfusion of poly-L-lysine acutely reversed the action of 

aa-st PIP2 and dramatically inhibited the inward current magnitude of macropatches expressing 

Kir2.3 [Fig. 13A] exhibiting PIP2 scavenging behavior as described by previous work (Lopes, 

2002). The inhibitory effect of poly-L-lysine was also washed out upon continuous perfusion of 

aa-st PIP2 (data not shown). 

The soluble phosphoinositide form diC8 (50 µM) also restored the inward current elicited 

by Kir2.3 channels by roughly 85-90% of the current observed in cell-attached patches at -100 

mV [Fig 14B]. DiC8 perfusion reversed the inhibitory action of poly-L-lysine [Fig. 14A], similar 

to the action of long-chain PIP2 (aa-st PIP2) but with faster activation kinetics [Figs. 13 and 14] 

as well as deactivation kinetics. These observations are in agreement with previous experiments 

that showed how readily diC8 can diffuse out of the membrane compared to its endogenous long 

chain analog [ 5 ]. 

  

Caged-diC8 is able to restore inward Kir2.3 currents. 

While the initial results (n = 3) suggested that caged-diC8 had no effect on inward Kir2.3 

current [Fig. 15] in macropatches, they were inconclusive due to the instability of excised 

patches during these experiments. While in most cases, caged-diC8 seemed to have little or no 

effect on Kir2.3 activation, patches tended to break before convincing activation with control 

active PIP2 could be confirmed. Dr. Qiong-yao Tang’s subsequent experiments succeeded in 

showing that caged-diC8 (~50 µM) was able to restore the current activity by 90% of the 

magnitude of inward current measured for the cell-attached configuration following poly-L-
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lysine inhibition [Fig. 17]. Interestingly, caged-diC8 activation produced highly fluctuating 

currents [Fig. 16A] relative to currents elicited by unmodified diC8 [Figs 14A and 15].  

 

UV-irradiation inactivates caged-diC8, reproducing a fraction of the inward Kir2.3 

currents restored by caged-diC8. 

 Irradiating the macropatch directly with a 365 nm UV wavelength to de-cage the 

caged-diC8, often destroyed the patch while generating an electrical noise that complicated the 

analysis of electrical recordings (data not shown). Instead, Dr. Qiong-yao Tang irradiated the 

reservoir containing caged-diC8 for 60-90s at an approximate 10 cm distance from the inside-out 

patch prior to perfusion. Surprisingly, the irradiation of caged-diC8 yielded currents that were 

45% compared to that of caged-diC8 currents [Fig. 17]. 

 Interestingly, irradiation of caged-diC8 also seemed to reduce the high fluctuations 

typical of currents elicited by non-irradiated caged-diC8 and to elicit lower currents than the non-

irradiated caged-diC8 [Fig 16A].  
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Figure 12. Expression of Kir2.3 in Xenopus laevis oocytes gives rise to robust whole-cell 

inwardly rectifying potassium current. A. Representative time course of Kir2.3 activity. At 

hyperpolarizing conditions using (-100 mV), Kir2.3 elicits robust inward current (~25 µA) in 

high-potassium (HK) 90 mM solution, while the perfusion of barium chloride (2 mM) nearly 

abrogated the whole-cell activity of the channel. B. Current-voltage relationships of Ba2+-

sensitive currents (n = 7) from Kir2.3 cRNA injected oocytes show the inwardly rectifying 

properties of Kir2.3 [Fig. 7].  
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Figure 13. Application of long chain PIP2 (aa-st PIP2) to the cytoplasmic side of inside-out 

oocyte macropatch activates the Kir2.3 current. Addition of long chain arachidonic acid-

stearyl (aa-st) PIP2 (10 µM) significantly increased Kir channel activity. A. Representative trace 

of Kir2.3 activity. Time course shows that perfusion with FVPP maintained channel activity, 

while subsequent application of long chain PIP2 activated Kir2.3 currents; addition of poly-L-

lysine (2 ug/mL) inhibited the inward current magnitude of macropatches expressing Kir2.3.  B. 

Summary of traces shows significant increase of Kir2.3 activity upon application of aa-st PIP2 (P 

< 0.03). 
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Figure 14. Application of dioctanoyl PIP2 (diC8) to the cytoplasmic side of inside-out oocyte 

macropatch rescues Kir2.3 current. Addition of diC8 (50 µM) significantly increased channel 

activity. A. Representative tracing of Kir2.3 activity. Time course shows that perfusion with 

FVPP maintained channel activity. While subsequent application of poly-L-lysine inhibited the 

inward current, ensuing application of diC8 rescued Kir2.3 current. B. Summary of traces show 

significant rescue of Kir2.3 activity upon application of diC8 (P < 0.001)  .   
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Figure 15. Preliminary finding shows that caged-diC8 is inactive. Addition of caged-diC8 

was not able to maintain the activation of the Kir2.3 current following their activation by the 

unmodified diC8. 
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Figure 16. Caged-diC8 activates the Kir2.3 current, while irradiation (de-caging) limits the 

effectiveness of caged-diC8. 1. Reactivation of Kir2.3 channels by caged-diC8 (50 µM) 

following depletion of endogenous PIP2 by poly-L-lysine (300 µg/ml). 2A: Traces show the 

reactivation by caged-diC8 (50 µM) before and after UV irradiation. Poly-L-lysine (300 µg/ml) 

was applied after the current was relatively stable; the kinetics of the current reactivated by 

caged-diC8 can be fitted by a single exponential function. T50 represents the time to reach 50% 

activation. Dashed line: zero current, Arrow: application of poly-L-lysine (poly-Lys); 

Horizontal bar: indicates application of caged-diC8 before and after UV irradiation. 3B and 

3C: representative ramp traces from the time points indicated by numbers in A: 3B before UV 

and 3C after UV irradiation. 
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Figure 17. Summary data: caged-diC8 effect before and after UV irradiation. Kir 2.3 

currents are normalized and plotted together with the effect of poly-L-lysine (poly-Lys) before 

and after UV irradiation.   
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DISCUSSION AND FUTURE DIRECTIONS 

 

The purpose of this study was to develop a novel tool (photocaged dioctanoyl PIP2) for 

studying the effects of PI(4,5)P2 that could be activated at will (e.g. upon UV irradiation and de-

caging). Availability of such a molecular tool could be utilized in whole-cell systems, where 

microinjection of inactive caged PIP2 would not interfere with the cell’s electrical activity but 

upon de-caging the effects of PIP2 could be assessed. Unavailability of a caged PIP2 has forced 

past studies to focus on excised patch settings. While shortening the fatty acid chains of 

endogenous long chain PIP2 to an eight-carbon long chain in dioctanoyl PIP2 (diC8) has been 

used effectively to study ion channel modulation by PIP2 in inside-out patches, their application 

to whole-cell systems has been severely limited. Although we have much control over the PIP2 

delivery in inside-out patch settings by simply altering perfusion solutions, the application of 

PIP2 into the whole cell through the microelectrode is slow and inefficient as the phospholipid 

sticks to the glass electrode and does not permit us to look at the functional effects of PIP2 

dynamically.  

We were motivated to increase the degree of external control we have in whole-cell 

systems (as in excised patches) through the addition of a light activated switch on diC8 in 

collaboration with Dr. Deiter’s lab at North Carolina State University. Here, we have tested the 

functional effects of caged and uncaged diC8 in an established macropatch system expressing 
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Kir2.3 to verify whether the 1) caging inactivates PIP2 function and 2) decaging through UV 

irradiation restores PIP2 function. Although initial experiments suggested that caging diC8 

reduces its activity [Fig. 15], our subsequent observations have been contrary to these findings as 

well as to our expectations. We show that caged-diC8 behaves similarly to unmodified diC8 

while de-caging diC8 through UV irradiation produces a less effective PIP2 to activate Kir2.3 

currents [Figs. 16 and 17]. 

Before we tested the functional effects of photocaged-diC8, we reproduced experiments 

on Kir2.3 expression through the use of two-electrode-voltage clamp (TEVC) technique and 

macropatch experiments with long chain PIP2 (aa-st PIP2) and diC8 [Figs. 12, 13, 14] to verify 

past observations and prepare to test the photocaged-diC8. The TEVC experiments [Fig 12] 

verified that the Kir2.3 construct can be successfully expressed to record robust inwardly 

rectifying potassium currents [Fig 12B]. Macropatch experiments with long chain PIP2, diC8, 

and poly-L-lysine verified the activating effects that PIP2 had on Kir2.3 as well as providing us 

with information to compare and contrast our results with the effects of photocaged-diC8. 

Our initial experiments suggested that caged-diC8 did not activate Kir2.3 currents [Fig. 

15]. Other trials have reproduced these results, however, patches broke soon after the perfusion 

of caged-diC8 not precluding the possibility of current recovery at a slower kinetic rate. Indeed, 

Dr. Qiong-yao Tang’s subsequent experiments with caged-diC8 showed more convincingly (n = 

5) that in conditions where patches could withstand perfusion longer, caged-diC8 was able to 

restore Kir2.3 current like unmodified diC8, however with much slower kinetics [Fig. 16A]. We 

also observed in both initial and subsequent experiments testing caged-diC8 that the Kir2.3 

current fluctuates much more than in diC8. This observation is consistent with the notion that the 
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perfused caged-diC8 is a mixture of doubly or singly caged-diC8: it is possible that the singly 

caged-diC8 still retains functional activity haphazardly and this may contribute to the fluctuating 

current that is absent in the unmodified, fully active diC8.  

Our attempts to de-cage diC8 through direct irradiation of the macropatch at 365 nm 

wavelength using a 23W UV lamp were met with oscillating electrical noise that complicated 

analysis of recordings as well as resulting in macropatch break down (data not shown). 

Therefore, we elected to irradiate the reservoir of caged-diC8 to test its functional effect on 

Kir2.3 currents. Contrary to our expectations, irradiated caged-diC8 (decaged-diC8) elicited 

~30% of the current that could be recovered by caged-diC8 [Fig. 17]. To rule out the possibility 

that irradiation itself may have damaged caged-diC8 nonspecifically, we are in the process of 

irradiating the reservoir of unmodified diC8 to test whether it has any effect on its function. 

Presently, further experiments with caged-diC8 in macropatches are required prior to 

their use in the whole-cell configuration. In particular, we could modify the caged-diC8 mixture 

so that most of the mixture is doubly caged to avoid further complications in our interpretation of 

results. We can also invest in a more ideal (lower intensity), focused source of UV-irradiation to 

limit its damaging effect on the macropatches and potentially on diC8 as well. The focusing of 

UV irradiation will also be a nice modification if future experiments attempt to spatially 

modulate diC8 function in a whole-cell system. 

Overall, the photocaging of diC8 deserves further development. If our modifications 

allow us to externally control the activation of diC8 with UV light, we will need to test whether 

the caging affects diC8 interaction with other cytoplasmic factors such as phosphatases and 

kinases. If successfully implemented in macropatches, photocaged-diC8 will equip us with the 
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tremendous potential to study whole-cell electrical activity simultaneously with the activation of 

diC8. The caging groups can also be modified so that they can be switched, “OFF” at a 

wavelength that is distinct from the “ON” wavelength. The addition of fluorophores to 

photocaged-diC8 may also be used to assay the interaction between ion channel and PIP2 

concomitantly.  
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